APS workshop
May 6, 2008

Using weak anomalous signals for phasing

Zbigniew Dauter

Anomalous scattering

If the energy of X-rays is close to the excitation energy of inner electrons
Structure factor and anomalous effect

\[
F(h) = \sum_j f_j \exp(2\pi i h \cdot r_j)
\]

\[
f_j = f_0^j(\theta) + f'_j(\lambda) + i f''_j(\lambda)
\]

Anomalous correction \(f''\) is proportional to absorption and fluorescence and \(f'\) is its derivative.
Anomalous corrections f' and f'' for Se

- Black - theory for single atom in vacuum
- Blue - measured curve from real sample

Selenium K edge
Friedel pair: $F(h)$ and $\ast F(-h)$

$|F(h)| \neq |F(-h)|$

Friedel’s Law is broken
Bijvoet difference

\[\Delta F^\pm = |F^+| - |F^-| \]
Bijvoet ratio

\[
\frac{\langle \Delta F^\pm \rangle}{\langle F \rangle} = 2^{1/2} \cdot \frac{(N_A)^{1/2} \cdot f''}{(N_T)^{1/2} \cdot Z_{\text{eff}}}
\]
Friedel pair: \(F(h) \) and \(\ast F(-h) \)
Friedel pair more realistically

\[f^\circ(S) = 16 \]
\[f''(S) = 0.56 \quad \text{for} \quad \lambda = 1.54 \text{ Å} \]

\[f^\circ(\text{Hg}) = 82 \]
\[f''(\text{Hg}) \approx 4.5 \quad \text{for} \quad \lambda < 1.0 \text{ Å} \]
Bijvoet ratio more realistically

\[
\frac{\Delta F}{F} \approx 3 - 6\% \text{ for Se} \\
\approx 2\% \text{ for P in DNA} \\
\approx 1\% \text{ for S}
\]
In 1985 B.C. Wang concluded (on the basis of the simulated, error-free data) that signal one S-S bridge in 120 a.a. protein is enough to solve its structure

\[2 \text{ S per 120 a.a. } \frac{<\Delta F>}{<F>} \approx 0.6 \% \]

\(0.6 \% = \text{so called Wang limit}\)

MAD is not possible for S or P since their absorption edges are at \(\lambda > 4 \text{ Å}\)
Partial structure of anomalous atoms

Anomalous atoms can be located by Patterson or direct methods, since:

\[\Delta F^\pm = 2 \cdot F''_A \cdot \sin (\varphi_T - \varphi_A) = 2 \cdot F_A \cdot (f''/f^o) \cdot \sin (\varphi_T - \varphi_A) \]

\[\Delta F^\pm \approx F_A \quad \text{for large Bijvoet differences} \]

anomalous atoms are mutually distant (even low resolution is “atomic”)
Two solutions for SAD (Single-wavelength Anomalous Diffraction)

If anomalous sites are known \((\Delta F^\pm, F_A, F'_A, F''_A, \phi_A)\)

there are two possible phase solutions
Selection of mean phase
Electron density map is then sum of correct structure and noise

\[F_1 + F_2 \]

Iterative solvent flattening indicates correct phase
With errors in measured $|F^+|$ and $|F^-|$ and inaccurate anomalous sites, the phase indications are not sharp.
Bijvoet ratio vs. resolution

\[\langle \Delta F^\pm \rangle / \langle F \rangle = (2 \frac{N_A}{N_p})^{1/2} \cdot (f_{A''}/Z_{\text{eff}}) \]

Four data sets from glucose isomerase

1 Mn + 10 S in 375 a.a.
SAD result - d(CGCGCG)₂

Hexamer duplex of Z-DNA

10 P among 12 bases

\[\lambda = 1.54 \text{ Å}, \quad f''(P) = 0.48 \]

\[\langle \Delta F^\pm \rangle / \langle |F| \rangle = 2.0 \% \]

resolution 1.5 Å

phased with SHELXD/SHARP
SAD result - xylanase

5 S among ~ 2570 atoms
\(\lambda = 1.49 \, \text{Å}, \quad f''(S) = 0.52 \)

\(\langle \Delta F^\pm \rangle / |F| = 0.56 \% \)

resolution 1.75 Å
phased with OASIS2004
SAD result - proteinase K

10 S + 1 Ca among in 279 a.a.

\(\lambda = 0.98 \text{ Å} \), \(f''(S) = 0.23 \)

\(\langle \Delta F^\pm \rangle / \langle |F| \rangle = 0.43 \% \)

resolution 1.3 Å

330 degrees of data

phased with SHELX/D/E

with 330...120°

failed with 90°

Mean phase error 27.5°
Weak anomalous signal

Very weak anomalous signal can be used successfully, but data have to be complete and measured very accurately, with R_{merge} comparable with expected $\langle \Delta I \rangle / \langle I \rangle$

Resolution, anomalous scatterer type etc. are not so crucial
The only good indicator

only one satisfactory indicator of anomalous signal exists
The only good indicator

only one satisfactory indicator

of anomalous signal exists:

successful structure solution
The only good indicator

only one satisfactory indicator of anomalous signal exists:

successful structure solution

3.0-\(\lambda\) approach (MAD, 1990)
1.5-\(\lambda\) approach (Dauter, 2002)
1.0-\(\lambda\) approach (SAD, nowadays)
0.5-\(\lambda\) approach (Minor et al., 2007)

structure can be solved when crystal is still at the beam line