Structure of the Regulatory Cytosolic Domain of a Eukaryotic Potassium-Chloride Cotransporter.

Publication Type:

Journal Article

Source:

Structure (2020)

Abstract:

<p>Cation-chloride cotransporters (CCCs) regulate the movement of chloride across membranes, controlling physiological processes from cell volume maintenance to neuronal signaling. Human CCCs are clinical targets for existing diuretics and potentially additional indications. Here, we report the X-ray crystal structure of the soluble C-terminal regulatory domain of a eukaryotic potassium-chloride cotransporter, Caenorhabditis elegans KCC-1. We observe a core α/β fold conserved among CCCs. Using structure-based sequence alignment, we analyze similarities and differences to the C-terminal domains of other CCC family members. We find that important regulatory motifs are in less-structured regions and residues important for dimerization are not widely conserved, suggesting that oligomerization and its effects may vary within the larger family. This snapshot of a eukaryotic KCC is a valuable starting point for the rational design of studies of cellular chloride regulation.</p>

PDB: 
6VW9
Detector: 
PILATUS
Beamline: 
24-ID-C