Publications

Found 2750 results
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Swofford, C. A., Nordeen, S. A., Chen, L., Desai, M. M., Chen, J., Springs, S. L., Schwartz, T. U., and Sinskey, A. J. (2022) Structure and Specificity of an Anti-Chloramphenicol Single Domain Antibody for Detection of Amphenicol Residues. Protein Sci. 10.1002/pro.4457
Swain, M., Ageeli, A. A., Kasprzak, W. K., Li, M., Miller, J. T., Sztuba-Solinska, J., Schneekloth, J. S., Koirala, D., Piccirili, J., Fraboni, A. J., Murelli, R. P., Wlodawer, A., Shapiro, B. A., Baird, N., and Le Grice, S. F. J. (2021) Dynamic bulge nucleotides in the KSHV PAN ENE triple helix provide a unique binding platform for small molecule ligands. Nucleic Acids Res. 49, 13179-13193
Svetlov, M. S., Syroegin, E. A., Aleksandrova, E. V., Atkinson, G. C., Gregory, S. T., Mankin, A. S., and Polikanov, Y. S. (2021) Structure of Erm-modified 70S ribosome reveals the mechanism of macrolide resistance. Nat Chem Biol. 10.1038/s41589-020-00715-0
Svetlov, M. S., Plessa, E., Chen, C. - W., Bougas, A., Krokidis, M. G., Dinos, G. P., and Polikanov, Y. (2019) High-resolution crystal structures of ribosome-bound chloramphenicol and erythromycin provide the ultimate basis for their competition. RNA. 10.1261/rna.069260.118
Suzuki, T., Miller, C., Guo, L. - T., Ho, J. M. L., Bryson, D. I., Wang, Y. - S., Liu, D. R., and Söll, D. (2017) Crystal structures reveal an elusive functional domain of pyrrolysyl-tRNA synthetase. Nat Chem Biol. 10.1038/nchembio.2497
Suzuki, C., Garces, R. G., Edmonds, K. A., Hiller, S., Hyberts, S. G., Marintchev, A., and Wagner, G. (2008) PDCD4 inhibits translation initiation by binding to eIF4A using both its MA3 domains. Proc Natl Acad Sci U S A. 105, 3274-9
Suwa, Y., Gu, J., Baranovskiy, A. G., Babayeva, N. D., Pavlov, Y. I., and Tahirov, T. H. (2015) Crystal Structure of the Human Pol α B Subunit in Complex with the C-terminal Domain of the Catalytic Subunit.. J Biol Chem. 290, 14328-37
Suslov, N. B., DasGupta, S., Huang, H., Fuller, J. R., Lilley, D. M. J., Rice, P. A., and Piccirilli, J. A. (2015) Crystal structure of the Varkud satellite ribozyme. Nat Chem Biol. 11, 840-6
Susa, K. J., Seegar, T. Cm, Blacklow, S. C., and Kruse, A. C. (2020) A dynamic interaction between CD19 and the tetraspanin CD81 controls B cell co-receptor trafficking. Elife. 10.7554/eLife.52337
Sung, R. - J., Zhang, M., Qi, Y., and Verdine, G. L. (2013) Structural and biochemical analysis of DNA helix invasion by the bacterial 8-oxoguanine DNA glycosylase MutM. J Biol Chem. 288, 10012-23
Sung, R. - J., Zhang, M., Qi, Y., and Verdine, G. L. (2012) Sequence-dependent structural variation in DNA undergoing intrahelical inspection by the DNA glycosylase MutM. J Biol Chem. 287, 18044-54
Sun, J., Paduch, M., Kim, S. - A., Kramer, R. M., Barrios, A. F., Lu, V., Luke, J., Usatyuk, S., Kossiakoff, A. A., and Tan, S. (2018) Structural basis for activation of SAGA histone acetyltransferase Gcn5 by partner subunit Ada2. Proc Natl Acad Sci U S A. 10.1073/pnas.1805343115
Sun, X. - J., Wang, Z., Wang, L., Jiang, Y., Kost, N., T Soong, D., Chen, W. - Y., Tang, Z., Nakadai, T., Elemento, O., Fischle, W., Melnick, A., Patel, D. J., Nimer, S. D., and Roeder, R. G. (2013) A stable transcription factor complex nucleated by oligomeric AML1-ETO controls leukaemogenesis. Nature. 500, 93-7
Sun, T., Heiden, J. A. Vander, Gao, X., Yin, J., Uttarwar, S., Liang, W. - C., Jia, G., Yadav, R., Huang, Z., Mitra, M., Halpern, W., Bender, H. S., Brightbill, H. D., Wu, Y., Lupardus, P., Ramalingam, T., and Arron, J. R. (2024) Isoform-selective TGF-β3 inhibition for systemic sclerosis.. Med. 5, 132-147.e7
Sun, Z. - W., Waybright, J. M., Beldar, S., Chen, L., Foley, C. A., Norris-Drouin, J. L., Lyu, T. - J., Dong, A., Min, J., Wang, Y. - P., James, L. I., and Wang, Y. (2022) Cdyl Deficiency Brakes Neuronal Excitability and Nociception through Promoting Kcnb1 Transcription in Peripheral Sensory Neurons. Adv Sci (Weinh). 9, e2104317
Summers, B. J., Digianantonio, K. M., Smaga, S. S., Huang, P. - T., Zhou, K., Gerber, E. E., Wang, W., and Xiong, Y. (2019) Modular HIV-1 Capsid Assemblies Reveal Diverse Host-Capsid Recognition Mechanisms. Cell Host Microbe. 26, 203-216.e6
Sullivan, J. R., Lupien, A., Kalthoff, E., Hamela, C., Taylor, L., Munro, K. A., T Schmeing, M., Kremer, L., and Behr, M. A. (2021) Efficacy of epetraborole against Mycobacterium abscessus is increased with norvaline. PLoS Pathog. 17, e1009965
Sukumar, N., Kurinov, I., Capel, M., Withrow, J., Sukumar, S., and Davidson, V. L. (2021) Ultra-high resolution and charge-density studies on type-I copper protein, amicyanin, from Paracoccus denitrificans. Biophysical Society Annual Meeting, February 22-26, 2021
Sukumar, N., Chen, Z. -wei, Ferrari, D., Merli, A., Rossi, G. Luigi, Bellamy, H. D., Chistoserdov, A., Davidson, V. L., and F Mathews, S. (2006) Crystal structure of an electron transfer complex between aromatic amine dehydrogenase and azurin from Alcaligenes faecalis. Biochemistry. 45, 13500-10
Sukumar, N. (2013) Crystallographic studies on B12 binding proteins in eukaryotes and prokaryotes. Biochimie. 95, 976-88
Sukumar, N., Dewanti, A., Merli, A., Rossi, G. Luigi, Mitra, B., and F Mathews, S. (2009) Structures of the G81A mutant form of the active chimera of (S)-mandelate dehydrogenase and its complex with two of its substrates. Acta Crystallogr D Biol Crystallogr. 65, 543-52
Sukumar, N. (2014) A comparative analysis on X-ray structure of cobalamin binding proteins. 23rd International Union of Crystallography (IuCr) and General Assembly, August 5–12, 2014
Sukumar, N., Liu, S., Li, W., Mathews, F. S., Mitra, B., and Kandavelu, P. (2018) Structure of the monotopic membrane protein (S)-mandelate dehydrogenase at 2.2Å resolution.. Biochimie. 10.1016/j.biochi.2018.07.017
Sukumar, N., Mathews, F. S., Langan, P., and Davidson, V. L. (2010) A joint x-ray and neutron study on amicyanin reveals the role of protein dynamics in electron transfer. Proc Natl Acad Sci U S A. 107, 6817-22
Sukumar, N., Choi, M., and Davidson, V. L. (2011) Replacement of the axial copper ligand methionine with lysine in amicyanin converts it to a zinc-binding protein that no longer binds copper. J Inorg Biochem. 105, 1638-44

Pages