Found 173 results
Filters: First Letter Of Title is M  [Clear All Filters]
Journal Article
Zhang, A., Jordan, J. L., Ivanova, M. I., Weiss, W. F., Roberts, C. J., and Fernandez, E. J. (2010) Molecular level insights into thermally induced α-chymotrypsinogen A amyloid aggregation mechanism and semiflexible protofibril morphology.. Biochemistry. 49, 10553-64
Rubinstein, R., Thu, C. Aye, Goodman, K. Marie, Wolcott, H. Noelle, Bahna, F., Mannepalli, S., Ahlsen, G., Chevee, M., Halim, A., Clausen, H., Maniatis, T., Shapiro, L., and Honig, B. (2015) Molecular logic of neuronal self-recognition through protocadherin domain interactions. Cell. 163, 629-42
Poor, C. B., Wegner, S. V., Li, H., Dlouhy, A. C., Schuermann, J. P., Sanishvili, R., Hinshaw, J. R., Riggs-Gelasco, P. J., Outten, C. E., and He, C. (2014) Molecular mechanism and structure of the Saccharomyces cerevisiae iron regulator Aft2. Proc Natl Acad Sci U S A. 111, 4043-8
Shen, C., Lu, A., Xie, W. Jun, Ruan, J., Negro, R., Egelman, E. H., Fu, T. - M., and Wu, H. (2019) Molecular mechanism for NLRP6 inflammasome assembly and activation. Proc Natl Acad Sci U S A. 10.1073/pnas.1817221116
Yin, Q., Sester, D. P., Tian, Y., Hsiao, Y. - S., Lu, A., Cridland, J. A., Sagulenko, V., Thygesen, S. J., Choubey, D., Hornung, V., Walz, T., Stacey, K. J., and Wu, H. (2013) Molecular mechanism for p202-mediated specific inhibition of AIM2 inflammasome activation. Cell Rep. 4, 327-39
Hamilton, K., and Tong, L. (2020) Molecular mechanism for the interaction between human CPSF30 and hFip1. Genes Dev. 10.1101/gad.343814.120
Luo, S., and Tong, L. (2017) Molecular mechanism for the regulation of yeast separase by securin. Nature. 542, 255-259
Lv, Z., Yuan, L., Atkison, J. H., Williams, K. M., Vega, R., E Sessions, H., Divlianska, D. B., Davies, C., Chen, Y., and Olsen, S. K. (2018) Molecular mechanism of a covalent allosteric inhibitor of SUMO E1 activating enzyme. Nat Commun. 9, 5145
Zhong, X., Du, J., Hale, C. J., Gallego-Bartolome, J., Feng, S., Vashisht, A. A., Chory, J., Wohlschlegel, J. A., Patel, D. J., and Jacobsen, S. E. (2014) Molecular mechanism of action of plant DRM de novo DNA methyltransferases. Cell. 157, 1050-60
Hattori, M., and Gouaux, E. (2012) Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature. 485, 207-12
Wang, Q., Navarro, M. V. A. S., Peng, G., Molinelli, E., Goh, S. Lin, Judson, B. L., Rajashankar, K. R., and Sondermann, H. (2009) Molecular mechanism of membrane constriction and tubulation mediated by the F-BAR protein Pacsin/Syndapin. Proc Natl Acad Sci U S A. 106, 12700-5
Ji, Q., Zhang, L., Jones, M. B., Sun, F., Deng, X., Liang, H., Cho, H., Brugarolas, P., Gao, Y. N., Peterson, S. N., Lan, L., Bae, T., and He, C. (2013) Molecular mechanism of quinone signaling mediated through S-quinonization of a YodB family repressor QsrR. Proc Natl Acad Sci U S A. 110, 5010-5
Sekiyama, N., Arthanari, H., Papadopoulos, E., Rodriguez-Mias, R. A., Wagner, G., and Léger-Abraham, M. (2015) Molecular mechanism of the dual activity of 4EGI-1: Dissociating eIF4G from eIF4E but stabilizing the binding of unphosphorylated 4E-BP1. Proc Natl Acad Sci U S A. 112, E4036-45
Calmettes, C., Ing, C., Buckwalter, C. M., Bakkouri, M. El, Lai, C. Chieh- Lin, Pogoutse, A., Gray-Owen, S. D., Pomès, R., and Moraes, T. F. (2015) The molecular mechanism of Zinc acquisition by the neisserial outer-membrane transporter ZnuD. Nat Commun. 6, 7996
Wiltzius, J. J. W., Landau, M., Nelson, R., Sawaya, M. R., Apostol, M. I., Goldschmidt, L., Soriaga, A. B., Cascio, D., Rajashankar, K., and Eisenberg, D. (2009) Molecular mechanisms for protein-encoded inheritance. Nat Struct Mol Biol. 16, 973-8
Xie, W., Wang, S., Wang, J., M de la Cruz, J., Xu, G., Scaltriti, M., and Patel, D. J. (2021) Molecular mechanisms of assembly and TRIP13-mediated remodeling of the human Shieldin complex. Proc Natl Acad Sci U S A. 10.1073/pnas.2024512118
Zhang, J., Kiser, P. D., Badiee, M., Palczewska, G., Dong, Z., Golczak, M., Tochtrop, G. P., and Palczewski, K. (2015) Molecular pharmacodynamics of emixustat in protection against retinal degeneration. J Clin Invest. 125, 2781-94
Schnabl, J., Wang, J., Hohmann, U., Gehre, M., Batki, J., Andreev, V. I., Purkhauser, K., Fasching, N., Duchek, P., Novatchkova, M., Mechtler, K., Plaschka, C., Patel, D. J., and Brennecke, J. (2021) Molecular principles of Piwi-mediated cotranscriptional silencing through the dimeric SFiNX complex. Genes Dev. 35, 392-409
Dunkle, J. A., Vinal, K., Desai, P. M., Zelinskaya, N., Savic, M., West, D. M., Conn, G. L., and Dunham, C. M. (2014) Molecular recognition and modification of the 30S ribosome by the aminoglycoside-resistance methyltransferase NpmA. Proc Natl Acad Sci U S A. 111, 6275-80
Chinai, J. M., Taylor, A. B., Ryno, L. M., Hargreaves, N. D., Morris, C. A., P Hart, J., and Urbach, A. R. (2011) Molecular recognition of insulin by a synthetic receptor. J Am Chem Soc. 133, 8810-3
Patchett, S., Lv, Z., Rut, W., Békés, M., Drag, M., Olsen, S. K., and Huang, T. T. (2021) A molecular sensor determines the ubiquitin substrate specificity of SARS-CoV-2 papain-like protease. Cell Rep. 36, 109754
Cheng, Z., Cheung, P., Kuo, A. J., Yukl, E. T., Wilmot, C. M., Gozani, O., and Patel, D. J. (2014) A molecular threading mechanism underlies Jumonji lysine demethylase KDM2A regulation of methylated H3K36. Genes Dev. 28, 1758-71
Tompkins, K. J., Houtti, M., Litzau, L. A., Aird, E. J., Everett, B. A., Nelson, A. T., Pornschloegl, L., Limón-Swanson, L. K., Evans, R. L., Evans, K., Shi, K., Aihara, H., and Gordon, W. R. (2021) Molecular underpinnings of ssDNA specificity by Rep HUH-endonucleases and implications for HUH-tag multiplexing and engineering. Nucleic Acids Res. 49, 1046-1064
Torrens-Spence, M. Patrick, Liu, C. - T., Pluskal, T., Chung, Y. Kwan, and Weng, J. - K. (2018) Monoamine Biosynthesis via a Noncanonical Calcium-Activatable Aromatic Amino Acid Decarboxylase in Psilocybin Mushroom. ACS Chem Biol. 13, 3343-3353
Sha, F., Kurosawa, K., Glasser, E., Ketavarapu, G., Albazzaz, S., Koide, A., and Koide, S. (2023) Monobody Inhibitor Selective to the Phosphatase Domain of SHP2 and its Use as a Probe for Quantifying SHP2 Allosteric Regulation. J Mol Biol. 435, 168010