Publications

Found 2722 results
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Saoji, M., and Paukstelis, P. J. (2015) Sequence-dependent structural changes in a self-assembling DNA oligonucleotide. Acta Crystallogr D Biol Crystallogr. 71, 2471-8
Saoji, M., Zhang, D., and Paukstelis, P. J. (2015) Probing the role of sequence in the assembly of three-dimensional DNA crystals. Biopolymers. 103, 618-26
Saotome, K., Singh, A. K., Yelshanskaya, M. V., and Sobolevsky, A. I. (2016) Crystal structure of the epithelial calcium channel TRPV6. Nature. 534, 506-11
Saotome, K., Singh, A. K., and Sobolevsky, A. I. (2018) Determining the Crystal Structure of TRPV6. in Calcium Entry Channels in Non-Excitable Cells, pp. 275-292, Calcium Entry Channels in Non-Excitable Cells, Boca Raton (FL), 10.1201/9781315152592-14
A Saraswati, P., Relitti, N., Brindisi, M., Osko, J. D., Chemi, G., Federico, S., Grillo, A., Brogi, S., McCabe, N. H., Turkington, R. C., Ibrahim, O., O'Sullivan, J., Lamponi, S., Ghanim, M., Kelly, V. P., Zisterer, D., Amet, R., Barroeta, P. Hannon, Vanni, F., Ulivieri, C., Herp, D., Sarno, F., Di Costanzo, A., Saccoccia, F., Ruberti, G., Jung, M., Altucci, L., Gemma, S., Butini, S., Christianson, D. W., and Campiani, G. (2020) Spiroindoline-Capped Selective HDAC6 Inhibitors: Design, Synthesis, Structural Analysis, and Biological Evaluation. ACS Med Chem Lett. 11, 2268-2276
Saredi, G., Huang, H., Hammond, C. M., Alabert, C., Bekker-Jensen, S., Forne, I., Reverón-Gómez, N., Foster, B. M., Mlejnkova, L., Bartke, T., Cejka, P., Mailand, N., Imhof, A., Patel, D. J., and Groth, A. (2016) H4K20me0 marks post-replicative chromatin and recruits the TONSL–MMS22L DNA repair complex.. Nature. 534, 714-718
Sartmatova, D., Nash, T., Schormann, N., Nuth, M., Ricciardi, R., Banerjee, S., and Chattopadhyay, D. (2013) Crystallization and preliminary X-ray diffraction analysis of three recombinant mutants of Vaccinia virus uracil DNA glycosylase. Acta Crystallogr Sect F Struct Biol Cryst Commun. 69, 295-301
Sasaki, E., Zhang, X., Sun, H. G., Lu, M. -yehJade, Liu, T. -lin, Ou, A., Li, J. -yi, Chen, Y. -hsiang, Ealick, S. E., and Liu, H. -wen (2014) Co-opting sulphur-carrier proteins from primary metabolic pathways for 2-thiosugar biosynthesis. Nature. 510, 427-31
Sawaya, M. R., Cascio, D., Gingery, M., Rodriguez, J., Goldschmidt, L., Colletier, J. - P., Messerschmidt, M. M., Boutet, S., Koglin, J. E., Williams, G. J., Brewster, A. S., Nass, K., Hattne, J., Botha, S., R Doak, B., Shoeman, R. L., DePonte, D. P., Park, H. - W., Federici, B. A., Sauter, N. K., Schlichting, I., and Eisenberg, D. S. (2014) Protein crystal structure obtained at 2.9 Å resolution from injecting bacterial cells into an X-ray free-electron laser beam.. Proc Natl Acad Sci U S A. 111, 12769-74
Saxton, R. A., Knockenhauer, K. E., Schwartz, T. U., and Sabatini, D. M. (2016) The apo-structure of the leucine sensor Sestrin2 is still elusive. Sci Signal. 9, ra92
Saxton, R. A., Chantranupong, L., Knockenhauer, K. E., Schwartz, T. U., and Sabatini, D. M. (2016) Mechanism of arginine sensing by CASTOR1 upstream of mTORC1. Nature. 536, 229-33
Saxton, R. A., Knockenhauer, K. E., Wolfson, R. L., Chantranupong, L., Pacold, M. E., Wang, T., Schwartz, T. U., and Sabatini, D. M. (2016) Structural basis for leucine sensing by the Sestrin2-mTORC1 pathway. Science. 351, 53-8
Sazinsky, M. H., Dunten, P. W., McCormick, M. S., DiDonato, A., and Lippard, S. J. (2006) X-ray structure of a hydroxylase-regulatory protein complex from a hydrocarbon-oxidizing multicomponent monooxygenase, Pseudomonas sp. OX1 phenol hydroxylase. Biochemistry. 45, 15392-404
Schaefer, K., Owens, T. W., Kahne, D., and Walker, S. (2018) Substrate Preferences Establish the Order of Cell Wall Assembly in Staphylococcus aureus. J Am Chem Soc. 140, 2442-2445
Schaefer, K., Owens, T. W., Page, J. E., Santiago, M., Kahne, D., and Walker, S. (2020) Structure and reconstitution of a hydrolase complex that may release peptidoglycan from the membrane after polymerization. Nat Microbiol. 10.1038/s41564-020-00808-5
Schauder, C. M., Wu, X., Saheki, Y., Narayanaswamy, P., Torta, F., Wenk, M. R., De Camilli, P., and Reinisch, K. M. (2014) Structure of a lipid-bound extended synaptotagmin indicates a role in lipid transfer. Nature. 510, 552-5
Schiltz, C. J., Wilson, J. R., Hosford, C. J., Adams, M. C., Preising, S. E., DeBlasio, S. L., MacLeod, H. J., Van Eck, J., Heck, M. L., and Chappie, J. S. (2022) Polerovirus N-terminal readthrough domain structures reveal molecular strategies for mitigating virus transmission by aphids. Nat Commun. 13, 6368
Schiltz, C. J., Adams, M. C., and Chappie, J. S. (2020) The full-length structure of Thermus scotoductus OLD defines the ATP hydrolysis properties and catalytic mechanism of Class 1 OLD family nucleases. Nucleic Acids Res. 48, 2762-2776
Schiltz, C. J., Lee, A., Partlow, E. A., Hosford, C. J., and Chappie, J. S. (2019) Structural characterization of Class 2 OLD family nucleases supports a two-metal catalysis mechanism for cleavage. Nucleic Acids Res. 47, 9448-9463
Schirle, N. T., Sheu-Gruttadauria, J., and MacRae, I. J. (2014) Structural basis for microRNA targeting. Science. 346, 608-13
Schirle, N. T., and MacRae, I. J. (2012) The crystal structure of human Argonaute2. Science. 336, 1037-40
Schirle, N. T., Sheu-Gruttadauria, J., Chandradoss, S. D., Joo, C., and MacRae, I. J. (2015) Water-mediated recognition of t1-adenosine anchors Argonaute2 to microRNA targets. Elife. 10.7554/eLife.07646
Schlieker, C., Weihofen, W. A., Frijns, E., Kattenhorn, L. M., Gaudet, R., and Ploegh, H. L. (2007) Structure of a herpesvirus-encoded cysteine protease reveals a unique class of deubiquitinating enzymes. Mol Cell. 25, 677-87
Schmandt, N., Velisetty, P., Chalamalasetti, S. V., Stein, R. A., Bonner, R., Talley, L., Parker, M. D., Mchaourab, H. S., Yee, V. C., Lodowski, D. T., and Chakrapani, S. (2015) A chimeric prokaryotic pentameric ligand-gated channel reveals distinct pathways of activation. J Gen Physiol. 146, 323-40
T Schmeing, M., Moore, P. B., and Steitz, T. A. (2003) Structures of deacylated tRNA mimics bound to the E site of the large ribosomal subunit. RNA. 9, 1345-52

Pages