Publications

Found 2796 results
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
Guo, T. Wei, Bartesaghi, A., Yang, H., Falconieri, V., Rao, P., Merk, A., Eng, E. T., Raczkowski, A. M., Fox, T., Earl, L. A., Patel, D. J., and Subramaniam, S. (2017) Cryo-EM Structures Reveal Mechanism and Inhibition of DNA Targeting by a CRISPR-Cas Surveillance Complex. Cell. 171, 414-426.e12
Lu, J., Cao, Q., Hughes, M. P., Sawaya, M. R., Boyer, D. R., Cascio, D., and Eisenberg, D. S. (2020) CryoEM structure of the low-complexity domain of hnRNPA2 and its conversion to pathogenic amyloid. Nat Commun. 11, 4090
Fu, T. - M., Li, Y., Lu, A., Li, Z., Vajjhala, P. R., Cruz, A. C., Srivastava, D. B., DiMaio, F., Penczek, P. A., Siegel, R. M., Stacey, K. J., Egelman, E. H., and Wu, H. (2016) Cryo-EM Structure of Caspase-8 Tandem DED Filament Reveals Assembly and Regulation Mechanisms of the Death-Inducing Signaling Complex. Mol Cell. 64, 236-250
Liu, Y., Pan, J., Jenni, S., Raymond, D. D., Caradonna, T., Do, K. T., Schmidt, A. G., Harrison, S. C., and Grigorieff, N. (2017) CryoEM Structure of an Influenza Virus Receptor-Binding Site Antibody-Antigen Interface. J Mol Biol. 429, 1829-1839
Wu, X., and Rapoport, T. A. (2021) Cryo-EM structure determination of small proteins by nanobody-binding scaffolds (Legobodies). Proc Natl Acad Sci U S A. 10.1073/pnas.2115001118
Deng, Z., Paknejad, N., Maksaev, G., Sala-Rabanal, M., Nichols, C. G., Hite, R. K., and Yuan, P. (2018) Cryo-EM and X-ray structures of TRPV4 reveal insight into ion permeation and gating mechanisms. Nat Struct Mol Biol. 25, 252-260
Teplova, M., Falschlunger, C., Krasheninina, O., Egger, M., Ren, A., Patel, D. J., and Micura, R. (2019) Crucial Roles of Two Hydrated Mg Ions in Reaction Catalysis of the Pistol Ribozyme. Angew Chem Int Ed Engl. 10.1002/anie.201912522
Sethi, D. K., Gordo, S., Schubert, D. A., and Wucherpfennig, K. W. (2013) Crossreactivity of a human autoimmune TCR is dominated by a single TCR loop. Nat Commun. 4, 2623
Banerjee, S. (2018) The Critical Tools Needed To Deal with Challenging Structural Biology Projects. Chemistry Colloquium, Shiv Nadar University
Banerjee, S. (2019) The Critical Tools Needed To Deal with Challenging Crystallography. Department of Biophysics & Biophysical Chemistry, Johns Hopkins School of Medicine
Padayatti, P. S., Leung, J. H., Mahinthichaichan, P., Tajkhorshid, E., Ishchenko, A., Cherezov, V., S Soltis, M., J Jackson, B., C Stout, D., Gennis, R. B., and Zhang, Q. (2017) Critical Role of Water Molecules in Proton Translocation by the Membrane-Bound Transhydrogenase. Structure. 25, 1111-1119.e3
Jia, N., Jones, R., Yang, G., Ouerfelli, O., and Patel, D. J. (2019) CRISPR-Cas III-A Csm6 CARF Domain Is a Ring Nuclease Triggering Stepwise cA Cleavage with ApA>p Formation Terminating RNase Activity. Mol Cell. 75, 944-956.e6
Baca, C. F., Yu, Y., Rostøl, J. T., Majumder, P., Patel, D. J., and Marraffini, L. A. (2024) The CRISPR effector Cam1 mediates membrane depolarization for phage defence. Nature. 10.1038/s41586-023-06902-y
Baytshtok, V., Chen, J., Glynn, S. E., Nager, A. R., Grant, R. A., Baker, T. A., and Sauer, R. T. (2017) Covalently linked HslU hexamers support a probabilistic mechanism that links ATP hydrolysis to protein unfolding and translocation. J Biol Chem. 292, 5695-5704
Cavalier, M. C., Pierce, A. D., Wilder, P. T., Alasady, M. J., Hartman, K. G., Neau, D. B., Foley, T. L., Jadhav, A., Maloney, D. J., Simeonov, A., Toth, E. A., and Weber, D. J. (2014) Covalent small molecule inhibitors of Ca(2+)-bound S100B. Biochemistry. 53, 6628-40
Campbell, A. C., Becker, D. F., Gates, K. S., and Tanner, J. J. (2020) Covalent Modification of the Flavin in Proline Dehydrogenase by Thiazolidine-2-Carboxylate. ACS Chem Biol. 10.1021/acschembio.9b00935
Kim, S., Grant, R. A., and Sauer, R. T. (2011) Covalent linkage of distinct substrate degrons controls assembly and disassembly of DegP proteolytic cages. Cell. 145, 67-78
Chan, A. H., Lee, W. - G., Spasov, K. A., Cisneros, J. A., Kudalkar, S. N., Petrova, Z. O., Buckingham, A. B., Anderson, K. S., and Jorgensen, W. L. (2017) Covalent inhibitors for eradication of drug-resistant HIV-1 reverse transcriptase: From design to protein crystallography. Proc Natl Acad Sci U S A. 10.1073/pnas.1711463114
Ippolito, J. A., Niu, H., Bertoletti, N., Carter, Z. J., Jin, S., Spasov, K. A., Cisneros, J. A., Valhondo, M., Cutrona, K. J., Anderson, K. S., and Jorgensen, W. L. (2021) Covalent Inhibition of Wild-Type HIV-1 Reverse Transcriptase Using a Fluorosulfate Warhead. ACS Med Chem Lett. 12, 249-255
Prucha, G. R., Henry, S., Hollander, K., Carter, Z. J., Spasov, K. A., Jorgensen, W. L., and Anderson, K. S. (2023) Covalent and noncovalent strategies for targeting Lys102 in HIV-1 reverse transcriptase. Eur J Med Chem. 262, 115894
Geng, Y., Deng, Z., Zhang, G., Budelli, G., Butler, A., Yuan, P., Cui, J., Salkoff, L., and Magleby, K. L. (2020) Coupling of Ca and voltage activation in BK channels through the αB helix/voltage sensor interface.. Proc Natl Acad Sci U S A. 117, 14512-14521
Almutairi, M. M., Svetlov, M. S., Hansen, D. A., Khabibullina, N. F., Klepacki, D., Kang, H. - Y., Sherman, D. H., Vázquez-Laslop, N., Polikanov, Y. S., and Mankin, A. S. (2017) Co-produced natural ketolides methymycin and pikromycin inhibit bacterial growth by preventing synthesis of a limited number of proteins. Nucleic Acids Res. 45, 9573-9582
Fetherolf, M. M., Boyd, S. D., Taylor, A. B., Kim, H. Jong, Wohlschlegel, J. A., Blackburn, N. J., P Hart, J., Winge, D. R., and Winkler, D. D. (2017) Copper-zinc superoxide dismutase is activated through a sulfenic acid intermediate at a copper ion entry site. J Biol Chem. 292, 12025-12040
Sasaki, E., Zhang, X., Sun, H. G., Lu, M. -yehJade, Liu, T. -lin, Ou, A., Li, J. -yi, Chen, Y. -hsiang, Ealick, S. E., and Liu, H. -wen (2014) Co-opting sulphur-carrier proteins from primary metabolic pathways for 2-thiosugar biosynthesis. Nature. 510, 427-31
Hancock, S. P., Cascio, D., and Johnson, R. C. (2019) Cooperative DNA binding by proteins through DNA shape complementarity. Nucleic Acids Res. 47, 8874-8887

Pages