Publications

Found 2750 results
Journal Article
Kozono, S., Lin, Y. - M., Seo, H. - S., Pinch, B., Lian, X., Qiu, C., Herbert, M. K., Chen, C. - H., Tan, L., Gao, Z. Jeff, Massefski, W., Doctor, Z. M., Jackson, B. P., Chen, Y., Dhe-Paganon, S., Lu, K. Ping, and Zhou, X. Zhen (2018) Arsenic targets Pin1 and cooperates with retinoic acid to inhibit cancer-driving pathways and tumor-initiating cells. Nat Commun. 9, 3069
Watson, P. R., Bai, P., Wang, C., Cragin, A. D., Hooker, J. M., and Christianson, D. W. (2022) Aromatic Ring Fluorination Patterns Modulate Inhibitory Potency of Fluorophenylhydroxamates Complexed with Histone Deacetylase 6. Biochemistry. 10.1021/acs.biochem.2c00332
Ronnebaum, T. A., Gardner, S. M., and Christianson, D. W. (2020) An Aromatic Cluster in the Active Site of -Isozizaene Synthase Is an Electrostatic Toggle for Divergent Terpene Cyclization Pathways. Biochemistry. 10.1021/acs.biochem.0c00876
Dayeh, D. M., Cantara, W. A., Kitzrow, J. P., Musier-Forsyth, K., and Nakanishi, K. (2018) Argonaute-based programmable RNase as a tool for cleavage of highly-structured RNA. Nucleic Acids Res. 46, e98
Montemayor, E. J., Didychuk, A. L., Yake, A. D., Sidhu, G. K., Brow, D. A., and Butcher, S. E. (2018) Architecture of the U6 snRNP reveals specific recognition of 3'-end processed U6 snRNA. Nat Commun. 9, 1749
Zhou, Q., Lai, Y., Bacaj, T., Zhao, M., Lyubimov, A. Y., Uervirojnangkoorn, M., Zeldin, O. B., Brewster, A. S., Sauter, N. K., Cohen, A. E., S Soltis, M., Alonso-Mori, R., Chollet, M., Lemke, H. T., Pfuetzner, R. A., Choi, U. B., Weis, W. I., Diao, J., Südhof, T. C., and Brunger, A. T. (2015) Architecture of the synaptotagmin-SNARE machinery for neuronal exocytosis. Nature. 525, 62-7
Himanen, J. P., Yermekbayeva, L., Janes, P. W., Walker, J. R., Xu, K., Atapattu, L., Rajashankar, K. R., Mensinga, A., Lackmann, M., Nikolov, D. B., and Dhe-Paganon, S. (2010) Architecture of Eph receptor clusters. Proc Natl Acad Sci U S A. 107, 10860-5
Park, E., Rawson, S., Li, K., Kim, B. - W., Ficarro, S. B., Del Pino, G. Gonzalez-, Sharif, H., Marto, J. A., Jeon, H., and Eck, M. J. (2019) Architecture of autoinhibited and active BRAF-MEK1-14-3-3 complexes. Nature. 575, 545-550
Bi, Y., Mann, E., Whitfield, C., and Zimmer, J. (2018) Architecture of a channel-forming O-antigen polysaccharide ABC transporter. Nature. 553, 361-365
Ye, Q., West, A. M. V., Silletti, S., and Corbett, K. D. (2020) Architecture and self-assembly of the SARS-CoV-2 nucleocapsid protein. bioRxiv. 10.1101/2020.05.17.100685
Ye, Q., West, A. M. V., Silletti, S., and Corbett, K. D. (2020) Architecture and self-assembly of the SARS-CoV-2 nucleocapsid protein. Protein Sci. 10.1002/pro.3909
Whittle, J. R. R., and Schwartz, T. U. (2009) Architectural nucleoporins Nup157/170 and Nup133 are structurally related and descend from a second ancestral element. J Biol Chem. 284, 28442-52
Xie, W., Lama, L., Yang, X., Kuryavyi, V., Bhattacharya, S., Nudelman, I., Yang, G., Ouerfelli, O., J Glickman, F., Jones, R. A., Tuschl, T., and Patel, D. J. (2023) Arabinose- and xylose-modified analogs of 2',3'-cGAMP act as STING agonists. Cell Chem Biol. 10.1016/j.chembiol.2023.07.002
Simanshu, D. K., Zhai, X., Munch, D., Hofius, D., Markham, J. E., Bielawski, J., Bielawska, A., Malinina, L., Molotkovsky, J. G., Mundy, J. W., Patel, D. J., and Brown, R. E. (2014) Arabidopsis accelerated cell death 11, ACD11, is a ceramide-1-phosphate transfer protein and intermediary regulator of phytoceramide levels. Cell Rep. 6, 388-99
Moss, F. J., Mahinthichaichan, P., Lodowski, D. T., Kowatz, T., Tajkhorshid, E., Engel, A., Boron, W. F., and Vahedi-Faridi, A. (2020) Aquaporin-7: A Dynamic Aquaglyceroporin With Greater Water and Glycerol Permeability Than Its Bacterial Homolog GlpF. Front Physiol. 11, 728
Laganowsky, A., Zhao, M., Soriaga, A. B., Sawaya, M. R., Cascio, D., and Yeates, T. O. (2011) An approach to crystallizing proteins by metal-mediated synthetic symmetrization. Protein Sci. 20, 1876-90
Saxton, R. A., Knockenhauer, K. E., Schwartz, T. U., and Sabatini, D. M. (2016) The apo-structure of the leucine sensor Sestrin2 is still elusive. Sci Signal. 9, ra92
Hanke, L., Knockenhauer, K. E., R Brewer, C., van Diest, E., Schmidt, F. I., Schwartz, T. U., and Ploegh, H. L. (2016) The Antiviral Mechanism of an Influenza A Virus Nucleoprotein-Specific Single-Domain Antibody Fragment. MBio. 10.1128/mBio.01569-16
Shaban, N. M., Shi, K., Lauer, K. V., Carpenter, M. A., Richards, C. M., Salamango, D., Wang, J., Lopresti, M. W., Banerjee, S., Levin-Klein, R., Brown, W. L., Aihara, H., and Harris, R. S. (2018) The Antiviral and Cancer Genomic DNA Deaminase APOBEC3H Is Regulated by an RNA-Mediated Dimerization Mechanism. Mol Cell. 69, 75-86.e9
Hallin, J., Bowcut, V., Calinisan, A., Briere, D. M., Hargis, L., Engstrom, L. D., Laguer, J., Medwid, J., Vanderpool, D., Lifset, E., Trinh, D., Hoffman, N., Wang, X., J Lawson, D., Gunn, R. J., Smith, C. R., Thomas, N. C., Martinson, M., Bergstrom, A., Sullivan, F., Bouhana, K., Winski, S., He, L., Fernandez-Banet, J., Pavlicek, A., Haling, J. R., Rahbaek, L., Marx, M. A., Olson, P., and Christensen, J. G. (2022) Anti-tumor efficacy of a potent and selective non-covalent KRAS inhibitor. Nat Med. 28, 2171-2182
Uddin, M. Jashim, Crews, B. C., Xu, S., Ghebreselasie, K., Daniel, C. K., Kingsley, P. J., Banerjee, S., and Marnett, L. J. (2016) Antitumor Activity of Cytotoxic Cyclooxygenase-2 Inhibitors. ACS Chem Biol. 11, 3052-3060
Nicoludis, J. M., Vogt, B. E., Green, A. G., Schärfe, C. Pi, Marks, D. S., and Gaudet, R. (2016) Antiparallel protocadherin homodimers use distinct affinity- and specificity-mediating regions in cadherin repeats 1-4. Elife. 10.7554/eLife.18449
Bruce, H. A., Singer, A. U., Blazer, L. L., Luu, K., Ploder, L., Pavlenco, A., Kurinov, I., Adams, J. J., and Sidhu, S. S. (2024) Antigen-binding fragments with improved crystal lattice packing and enhanced conformational flexibility at the elbow region as crystallization chaperones. Protein Sci. 33, e5081
Hwang, S., Shah, M., Garcia, B., Hashem, N., Davidson, A. R., Moraes, T. F., and Maxwell, K. L. (2023) Anti-CRISPR Protein AcrIIC5 Inhibits CRISPR-Cas9 by Occupying the Target DNA Binding Pocket. J Mol Biol. 435, 167991
Tao, Y., Budhipramono, A., Huang, J., Fang, M., Xie, S., Kim, J., Khivansara, V., Dominski, Z., Tong, L., De Brabander, J. K., and Nijhawan, D. (2024) Anticancer benzoxaboroles block pre-mRNA processing by directly inhibiting CPSF3. Cell Chem Biol. 31, 139-149.e14

Pages