Found 2194 results
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
Aaron, J. A., Lin, X., Cane, D. E., and Christianson, D. W. (2010) Structure of epi-isozizaene synthase from Streptomyces coelicolor A3(2), a platform for new terpenoid cyclization templates. Biochemistry. 49, 1787-97
Abraham, J., Corbett, K. D., Farzan, M., Choe, H., and Harrison, S. C. (2010) Structural basis for receptor recognition by New World hemorrhagic fever arenaviruses. Nat Struct Mol Biol. 17, 438-44
Abskharon, R., Seidler, P. Matthew, Sawaya, M. R., Cascio, D., Yang, T. P., Philipp, S., Williams, C. Kazu, Newell, K. L., Ghetti, B., DeTure, M. A., Dickson, D. W., Vinters, H. V., Felgner, P. L., Nakajima, R., Glabe, C. G., and Eisenberg, D. S. (2020) Crystal structure of a conformational antibody that binds tau oligomers and inhibits pathological seeding by extracts from donors with Alzheimer's disease. J Biol Chem. 10.1074/jbc.RA120.013638
Adachi, M. S., Taylor, A. B., P Hart, J., and Fitzpatrick, P. F. (2012) Mechanistic and structural analyses of the roles of active site residues in yeast polyamine oxidase Fms1: characterization of the N195A and D94N enzymes. Biochemistry. 51, 8690-7
Adachi, M. S., Taylor, A. B., P Hart, J., and Fitzpatrick, P. F. (2012) Mechanistic and structural analyses of the role of His67 in the yeast polyamine oxidase Fms1. Biochemistry. 51, 4888-97
Adam, S., Anteneh, H., Hornisch, M., Wagner, V., Lu, J., Radde, N. E., Bashtrykov, P., Song, J., and Jeltsch, A. (2020) DNA sequence-dependent activity and base flipping mechanisms of DNMT1 regulate genome-wide DNA methylation. Nat Commun. 11, 3723
Adhikari, A. A., Seegar, T. C. M., Ficarro, S. B., McCurry, M. D., Ramachandran, D., Yao, L., Chaudhari, S. N., Ndousse-Fetter, S., Banks, A. S., Marto, J. A., Blacklow, S. C., and A Devlin, S. (2020) Development of a covalent inhibitor of gut bacterial bile salt hydrolases. Nat Chem Biol. 16, 318-326
Afshar, S., Sawaya, M. R., and Morrison, S. L. (2009) Structure of a mutant human purine nucleoside phosphorylase with the prodrug, 2-fluoro-2'-deoxyadenosine and the cytotoxic drug, 2-fluoroadenine. Protein Sci. 18, 1107-14
Agarkar, V. B., Babayeva, N. D., Wilder, P. J., Rizzino, A., and Tahirov, T. H. (2010) Crystal structure of mouse Elf3 C-terminal DNA-binding domain in complex with type II TGF-beta receptor promoter DNA. J Mol Biol. 397, 278-89
Agarkar, V. B., Babayeva, N. D., Pavlov, Y. I., and Tahirov, T. H. (2011) Crystal structure of the C-terminal domain of human DNA primase large subunit: implications for the mechanism of the primase-polymerase α switch.. Cell Cycle. 10, 926-31
Ahmad, M. Faiz, Alam, I., Huff, S. E., Pink, J., Flanagan, S. A., Shewach, D., Misko, T. A., Oleinick, N. L., Harte, W. E., Viswanathan, R., Harris, M. E., and Dealwis, C. Godfrey (2017) Potent competitive inhibition of human ribonucleotide reductase by a nonnucleoside small molecule. Proc Natl Acad Sci U S A. 114, 8241-8246
Ahmad, M. Faiz, Huff, S. E., Pink, J., Alam, I., Zhang, A., Perry, K., Harris, M. E., Misko, T., Porwal, S. K., Oleinick, N. L., Miyagi, M., Viswanathan, R., and Dealwis, C. Godfrey (2015) Identification of Non-nucleoside Human Ribonucleotide Reductase Modulators. J Med Chem. 58, 9498-509
Ahmad, M. Faiz, Wan, Q., Jha, S., Motea, E., Berdis, A., and Dealwis, C. (2012) Evaluating the therapeutic potential of a non-natural nucleotide that inhibits human ribonucleotide reductase. Mol Cancer Ther. 11, 2077-86
Ahmad, S., Wang, B., Walker, M. D., Tran, H. - K. R., Stogios, P. J., Savchenko, A., Grant, R. A., McArthur, A. G., Laub, M. T., and Whitney, J. C. (2019) An interbacterial toxin inhibits target cell growth by synthesizing (p)ppApp. Nature. 575, 674-678
Ahmad, M. Faiz, Kaushal, P. Singh, Wan, Q., Wijerathna, S. R., An, X., Huang, M., and Dealwis, C. Godfrey (2012) Role of arginine 293 and glutamine 288 in communication between catalytic and allosteric sites in yeast ribonucleotide reductase. J Mol Biol. 419, 315-29
Ahmed, M., Cheng, M., Zhao, Q., Goldgur, Y., Cheal, S. M., Guo, H. - F., Larson, S. M., and Cheung, N. - K. V. (2015) Humanized Affinity-matured Monoclonal Antibody 8H9 Has Potent Antitumor Activity and Binds to FG Loop of Tumor Antigen B7-H3. J Biol Chem. 290, 30018-29
Ahmed, M., Goldgur, Y., Hu, J., Guo, H. - F., and Cheung, N. - K. V. (2013) In silico driven redesign of a clinically relevant antibody for the treatment of GD2 positive tumors. PLoS One. 8, e63359
AhYoung, A. P., Koehl, A., Vizcarra, C. L., Cascio, D., and Egea, P. F. (2016) Structure of a putative ClpS N-end rule adaptor protein from the malaria pathogen Plasmodium falciparum. Protein Sci. 25, 689-701
AhYoung, A. P., Lu, B., Cascio, D., and Egea, P. F. (2017) Crystal structure of Mdm12 and combinatorial reconstitution of Mdm12/Mmm1 ERMES complexes for structural studies. Biochem Biophys Res Commun. 488, 129-135
AhYoung, A. P., Koehl, A., Cascio, D., and Egea, P. F. (2015) Structural mapping of the ClpB ATPases of Plasmodium falciparum: Targeting protein folding and secretion for antimalarial drug design. Protein Sci. 24, 1508-20
Aik, W. Shen, Lin, M. - H., Tan, D., Tripathy, A., Marzluff, W. F., Dominski, Z., Chou, C. - Y., and Tong, L. (2017) The N-terminal domains of FLASH and Lsm11 form a 2:1 heterotrimer for histone pre-mRNA 3'-end processing. PLoS One. 12, e0186034
Airola, M. V., Watts, K. J., Bilwes, A. M., and Crane, B. R. (2010) Structure of concatenated HAMP domains provides a mechanism for signal transduction. Structure. 18, 436-48
Albright, R. A., Ornstein, D. L., Cao, W., Chang, W. C., Robert, D., Tehan, M., Hoyer, D., Liu, L., Stabach, P., Yang, G., De La Cruz, E. M., and Braddock, D. T. (2014) Molecular basis of purinergic signal metabolism by ectonucleotide pyrophosphatase/phosphodiesterases 4 and 1 and implications in stroke. J Biol Chem. 289, 3294-306
Alex, J. M., Rennie, M. L., Volpi, S., Sansone, F., Casnati, A., and Crowley, P. B. (2018) Phosphonated Calixarene as a "€œMolecular Glue"€ for Protein Crystallization. Crystal Growth & DesignCryst. Growth Des. 18, 2467-2473
Alicea-Velázquez, N. L., Jakoncic, J., and Boggon, T. J. (2013) Structure-guided studies of the SHP-1/JAK1 interaction provide new insights into phosphatase catalytic domain substrate recognition. J Struct Biol. 181, 243-51