Publications

Found 2797 results
Filters: Remote-data-collection-info-and-manual is   [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Gorelik, A., Illes, K., Bui, K. Huy, and Nagar, B. (2022) Structures of the mannose-6-phosphate pathway enzyme, GlcNAc-1-phosphotransferase. Proc Natl Acad Sci U S A. 119, e2203518119
Su, C. - C., Klenotic, P. A., Cui, M., Lyu, M., Morgan, C. E., and Yu, E. W. (2021) Structures of the mycobacterial membrane protein MmpL3 reveal its mechanism of lipid transport. PLoS Biol. 19, e3001370
Singh, H., Arentson, B. W., Becker, D. F., and Tanner, J. J. (2014) Structures of the PutA peripheral membrane flavoenzyme reveal a dynamic substrate-channeling tunnel and the quinone-binding site. Proc Natl Acad Sci U S A. 111, 3389-94
Zhang, W., Dunkle, J. A., and Cate, J. H. D. (2009) Structures of the ribosome in intermediate states of ratcheting. Science. 325, 1014-7
Song, G., and Springer, T. A. (2014) Structures of the Toxoplasma gliding motility adhesin. Proc Natl Acad Sci U S A. 111, 4862-7
F Demircioglu, E., Sosa, B. A., Ingram, J., Ploegh, H. L., and Schwartz, T. U. (2016) Structures of TorsinA and its disease-mutant complexed with an activator reveal the molecular basis for primary dystonia. Elife. 10.7554/eLife.17983
Gürel, G., Blaha, G., Steitz, T. A., and Moore, P. B. (2009) Structures of triacetyloleandomycin and mycalamide A bind to the large ribosomal subunit of Haloarcula marismortui. Antimicrob Agents Chemother. 53, 5010-4
Knappenberger, A. John, Reiss, C. Wetheringt, and Strobel, S. A. (2018) Structures of two aptamers with differing ligand specificity reveal ruggedness in the functional landscape of RNA. Elife. 10.7554/eLife.36381
Lee, S., Choi, J., Mohanty, J., Sousa, L. P., Tome, F., Pardon, E., Steyaert, J., Lemmon, M. A., Lax, I., and Schlessinger, J. (2018) Structures of β-klotho reveal a 'zip code'-like mechanism for endocrine FGF signalling.. Nature. 10.1038/nature25010
Hou, X., Burstein, S. R., and Long, S. Barstow (2018) Structures reveal opening of the store-operated calcium channel Orai. Elife. 10.7554/eLife.36758
Rajagopalan, S., Teter, S. J., Zwart, P. H., Brennan, R. G., Phillips, K. J., and Kiley, P. J. (2013) Studies of IscR reveal a unique mechanism for metal-dependent regulation of DNA binding specificity. Nat Struct Mol Biol. 20, 740-7
Gallagher-Jones, M., Glynn, C., Boyer, D. R., Martynowycz, M. W., Hernandez, E., Miao, J., Zee, C. - T., Novikova, I. V., Goldschmidt, L., McFarlane, H. T., Helguera, G. F., Evans, J. E., Sawaya, M. R., Cascio, D., Eisenberg, D. S., Gonen, T., and Rodriguez, J. A. (2018) Sub-ångström cryo-EM structure of a prion protofibril reveals a polar clasp.. Nat Struct Mol Biol. 10.1038/s41594-017-0018-0
Zeller, M. J., Nuthanakanti, A., Li, K., Aubé, J., Serganov, A., and Weeks, K. M. (2022) Subsite Ligand Recognition and Cooperativity in the TPP Riboswitch: Implications for Fragment-Linking in RNA Ligand Discovery. ACS Chem Biol. 17, 438-448
Blank, P. N., Barrow, G. H., Chou, W. K. W., Duan, L., Cane, D. E., and Christianson, D. W. (2017) Substitution of Aromatic Residues with Polar Residues in the Active Site Pocket of epi-Isozizaene Synthase Leads to the Generation of New Cyclic Sesquiterpenes. Biochemistry. 10.1021/acs.biochem.7b00895
Shnitsar, V., Li, J., Li, X., Calmettes, C., Basu, A., Casey, J. R., Moraes, T. F., and Reithmeier, R. A. F. (2013) A substrate access tunnel in the cytosolic domain is not an essential feature of the solute carrier 4 (SLC4) family of bicarbonate transporters. J Biol Chem. 288, 33848-60
Blus, B. J., Hashimoto, H., Seo, H. - S., Krolak, A., and Debler, E. W. (2019) Substrate Affinity and Specificity of the ScSth1p Bromodomain Are Fine-Tuned for Versatile Histone Recognition. Structure. 27, 1460-1468.e3
Gao, J., Ha, B. Hak, Lou, H. Jane, Morse, E. M., Zhang, R., Calderwood, D. A., Turk, B. E., and Boggon, T. J. (2013) Substrate and inhibitor specificity of the type II p21-activated kinase, PAK6. PLoS One. 8, e77818
Wang, H., and Gouaux, E. (2012) Substrate binds in the S1 site of the F253A mutant of LeuT, a neurotransmitter sodium symporter homologue. EMBO Rep. 13, 861-6
Fang, J., Leichter, S. M., Jiang, J., Biswal, M., Lu, J., Zhang, Z. - M., Ren, W., Zhai, J., Cui, Q., Zhong, X., and Song, J. (2021) Substrate deformation regulates DRM2-mediated DNA methylation in plants. Sci Adv. 10.1126/sciadv.abd9224
Cao, H., Pauff, J. M., and Hille, R. (2010) Substrate orientation and catalytic specificity in the action of xanthine oxidase: the sequential hydroxylation of hypoxanthine to uric acid. J Biol Chem. 285, 28044-53
Schaefer, K., Owens, T. W., Kahne, D., and Walker, S. (2018) Substrate Preferences Establish the Order of Cell Wall Assembly in Staphylococcus aureus. J Am Chem Soc. 140, 2442-2445
Taabazuing, C. Y., Fermann, J., Garman, S., and Knapp, M. J. (2016) Substrate Promotes Productive Gas Binding in the α-Ketoglutarate-Dependent Oxygenase FIH.. Biochemistry. 55, 277-86
Liang, B., Xue, S., Terns, R. M., Terns, M. P., and Li, H. (2007) Substrate RNA positioning in the archaeal H/ACA ribonucleoprotein complex. Nat Struct Mol Biol. 14, 1189-95
Bohl, T. E., Ieong, P., Lee, J. K., Lee, T., Kankanala, J., Shi, K., Demir, Ö., Kurahashi, K., Amaro, R. E., Wang, Z., and Aihara, H. (2018) The substrate-binding cap of the UDP-diacylglucosamine pyrophosphatase LpxH is highly flexible, enabling facile substrate binding and product release. J Biol Chem. 10.1074/jbc.RA118.002503
Rosenberg, O. S., Dovala, D., Li, X., Connolly, L., Bendebury, A., Finer-Moore, J., Holton, J., Cheng, Y., Stroud, R. M., and Cox, J. S. (2015) Substrates Control Multimerization and Activation of the Multi-Domain ATPase Motor of Type VII Secretion. Cell. 161, 501-512

Pages