Publications

Found 2737 results
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
U
Unciuleac, M. - C., Goldgur, Y., and Shuman, S. (2017) Two-metal versus one-metal mechanisms of lysine adenylylation by ATP-dependent and NAD(+)-dependent polynucleotide ligases. Proc Natl Acad Sci U S A. 114, 2592-2597
Unciuleac, M. - C., Goldgur, Y., and Shuman, S. (2020) Caveat mutator: alanine substitutions for conserved amino acids in RNA ligase elicit unexpected rearrangements of the active site for lysine adenylylation. Nucleic Acids Res. 10.1093/nar/gkaa238
Unciuleac, M. - C., Smith, P. C., and Shuman, S. (2016) Crystal Structure and Biochemical Characterization of a Mycobacterium smegmatis AAA-Type Nucleoside Triphosphatase Phosphohydrolase (Msm0858). J Bacteriol. 198, 1521-33
Unciuleac, M. - C., Goldgur, Y., and Shuman, S. (2015) Structure and two-metal mechanism of a eukaryal nick-sealing RNA ligase. Proc Natl Acad Sci U S A. 112, 13868-73
Ultsch, M., Li, W., Eigenbrot, C., Di Lello, P., Lipari, M. T., Gerhardy, S., AhYoung, A. P., Quinn, J., Franke, Y., Chen, Y., M Beltran, K., Peterson, A., and Kirchhofer, D. (2019) Identification of a Helical Segment within the Intrinsically Disordered Region of the PCSK9 Prodomain. J Mol Biol. 431, 885-903
Uljon, S., Xu, X., Durzynska, I., Stein, S., Adelmant, G., Marto, J. A., Pear, W. S., and Blacklow, S. C. (2016) Structural Basis for Substrate Selectivity of the E3 Ligase COP1. Structure. 24, 687-696
Ujwal, R., Cascio, D., Colletier, J. - P., Faham, S., Zhang, J., Toro, L., Ping, P., and Abramson, J. (2008) The crystal structure of mouse VDAC1 at 2.3 A resolution reveals mechanistic insights into metabolite gating. Proc Natl Acad Sci U S A. 105, 17742-7
Uervirojnangkoorn, M., Lyubimov, A. Y., Zhou, Q., Weis, W. I., and Brunger, A. T. (2019) Resolving indexing ambiguities in X-ray free-electron laser diffraction patterns. Acta Crystallogr D Struct Biol. 75, 234-241
Uddin, M. Jashim, Crews, B. C., Xu, S., Ghebreselasie, K., Daniel, C. K., Kingsley, P. J., Banerjee, S., and Marnett, L. J. (2016) Antitumor Activity of Cytotoxic Cyclooxygenase-2 Inhibitors. ACS Chem Biol. 11, 3052-3060
Uddin, M. Jashim, Xu, S., Crews, B. C., Aleem, A. M., Ghebreselasie, K., Banerjee, S., and Marnett, L. J. (2020) Harmaline Analogs as Substrate-Selective Cyclooxygenase-2 Inhibitors. ACS Med Chem Lett. 11, 1881-1885
Ubah, O. C., Lake, E. W., Gunaratne, G. S., Gallant, J. P., Fernie, M., Robertson, A. J., Marchant, J. S., Bold, T. D., Langlois, R. A., Matchett, W. E., Thiede, J. M., Shi, K., Yin, L., Moeller, N. H., Banerjee, S., Ferguson, L., Kovaleva, M., Porter, A. J., Aihara, H., LeBeau, A. M., and Barelle, C. J. (2021) Mechanisms of SARS-CoV-2 neutralization by shark variable new antigen receptors elucidated through X-ray crystallography. Nat Commun. 12, 7325
T
Tyler, R. C., Bitto, E., Berndsen, C. E., Bingman, C. A., Singh, S., Lee, M. S., Wesenberg, G. E., Denu, J. M., Phillips, G. N., and Markley, J. L. (2006) Structure of Arabidopsis thaliana At1g77540 protein, a minimal acetyltransferase from the COG2388 family. Biochemistry. 45, 14325-36
Tuukkanen, A. T., Freire, D., Chan, S., Arbing, M. A., Reed, R. W., Evans, T. J., Zenkeviciutė, G., Kim, J., Kahng, S., Sawaya, M. R., Chaton, C. T., Wilmanns, M., Eisenberg, D., Parret, A. H. A., and Korotkov, K. V. (2018) Structural Variability of EspG Chaperones from Mycobacterial ESX-1, ESX-3 and ESX-5 Type VII Secretion Systems. J Mol Biol. 10.1016/j.jmb.2018.11.003
Turlington, Z. R., de Macedo, S. Vaz Ferrei, Perry, K., Belsky, S. L., Faust, J. A., Snider, M. J., and Hicks, K. A. (2023) Ligand bound structure of a 6-hydroxynicotinic acid 3-monooxygenase provides mechanistic insights. Arch Biochem Biophys. 752, 109859
Tu, X., and Palczewski, K. (2012) Crystal structure of the globular domain of C1QTNF5: Implications for late-onset retinal macular degeneration. J Struct Biol. 180, 439-46
Tu, X., and Palczewski, K. (2014) The macular degeneration-linked C1QTNF5 (S163) mutation causes higher-order structural rearrangements. J Struct Biol. 186, 86-94
Tu, D., Graziano, B. R., Park, E., Zheng, W., Li, Y., Goode, B. L., and Eck, M. J. (2012) Structure of the formin-interaction domain of the actin nucleation-promoting factor Bud6. Proc Natl Acad Sci U S A. 109, E3424-33
Tu, D., Zhu, Z., Zhou, A. Y., Yun, C. -hong, Lee, K. - E., Toms, A. V., Li, Y., Dunn, G. P., Chan, E., Thai, T., Yang, S., Ficarro, S. B., Marto, J. A., Jeon, H., Hahn, W. C., Barbie, D. A., and Eck, M. J. (2013) Structure and ubiquitination-dependent activation of TANK-binding kinase 1. Cell Rep. 3, 747-58
Tu, D., Li, Y., Song, H. Kyu, Toms, A. V., Gould, C. J., Ficarro, S. B., Marto, J. A., Goode, B. L., and Eck, M. J. (2011) Crystal structure of a coiled-coil domain from human ROCK I. PLoS One. 6, e18080
Tsai, W. - W., Wang, Z., Yiu, T. T., Akdemir, K. C., Xia, W., Winter, S., Tsai, C. - Y., Shi, X., Schwarzer, D., Plunkett, W., Aronow, B., Gozani, O., Fischle, W., Hung, M. - C., Patel, D. J., and Barton, M. Craig (2010) TRIM24 links a non-canonical histone signature to breast cancer. Nature. 468, 927-32
Tsai, W. - C., Gilbert, N. C., Ohler, A., Armstrong, M., Perry, S., Kalyanaraman, C., Yasgar, A., Rai, G., Simeonov, A., Jadhav, A., Standley, M., Lee, H. - W., Crews, P., Iavarone, A. T., Jacobson, M. P., Neau, D. B., Offenbacher, A. R., Newcomer, M., and Holman, T. R. (2021) Kinetic and structural investigations of novel inhibitors of human epithelial 15-lipoxygenase-2. Bioorg Med Chem. 46, 116349
Tsai, Y., Sawaya, M. R., and Yeates, T. O. (2009) Analysis of lattice-translocation disorder in the layered hexagonal structure of carboxysome shell protein CsoS1C. Acta Crystallogr D Biol Crystallogr. 65, 980-8
Truttmann, M. C., Cruz, V. E., Guo, X., Engert, C., Schwartz, T. U., and Ploegh, H. L. (2016) The Caenorhabditis elegans Protein FIC-1 Is an AMPylase That Covalently Modifies Heat-Shock 70 Family Proteins, Translation Elongation Factors and Histones. PLoS Genet. 12, e1006023
Truong, L., Kooshapur, H., Dey, S. Kumar, Li, X., Tjandra, N., Jaffrey, S. R., and Ferré-D'Amaré, A. R. (2021) The fluorescent aptamer Squash extensively repurposes the adenine riboswitch fold. Nat Chem Biol. 10.1038/s41589-021-00931-2
Tripathi, A., Mandon, E. C., Gilmore, R., and Rapoport, T. A. (2017) Two alternative binding mechanisms connect the protein translocation Sec71-Sec72 complex with heat shock proteins. J Biol Chem. 292, 8007-8018

Pages