Publications

Found 1123 results
Filters: First Letter Of Last Name is P  [Clear All Filters]
Journal Article
Seegar, T. C. M., Killingsworth, L. B., Saha, N., Meyer, P. A., Patra, D., Zimmerman, B., Janes, P. W., Rubinstein, E., Nikolov, D. B., Skiniotis, G., Kruse, A. C., and Blacklow, S. C. (2017) Structural Basis for Regulated Proteolysis by the α-Secretase ADAM10.. Cell. 171, 1638-1648.e7
Liu, Z., Zhang, S., Chen, P., Tian, S., Zeng, J., Perry, K., Dong, M., and Jin, R. (2021) Structural basis for selective modification of Rho and Ras GTPases by toxin B. Sci Adv. 7, eabi4582
Krochmal, D., Shao, Y., Li, N. - S., DasGupta, S., Shelke, S. A., Koirala, D., and Piccirilli, J. A. (2022) Structural basis for substrate binding and catalysis by a self-alkylating ribozyme. Nat Chem Biol. 10.1038/s41589-021-00950-z
DasGupta, S., Suslov, N. B., and Piccirilli, J. A. (2017) Structural Basis for Substrate Helix Remodeling and Cleavage Loop Activation in the Varkud Satellite Ribozyme. J Am Chem Soc. 139, 9591-9597
Uljon, S., Xu, X., Durzynska, I., Stein, S., Adelmant, G., Marto, J. A., Pear, W. S., and Blacklow, S. C. (2016) Structural Basis for Substrate Selectivity of the E3 Ligase COP1. Structure. 24, 687-696
Singh, M., Wang, Z., Koo, B. - K., Patel, A., Cascio, D., Collins, K., and Feigon, J. (2012) Structural basis for telomerase RNA recognition and RNP assembly by the holoenzyme La family protein p65. Mol Cell. 47, 16-26
Polley, S., Passos, D. Oliveira, Bin Huang, D. -, Mulero, M. Carmen, Mazumder, A., Biswas, T., Verma, I. M., Lyumkis, D., and Ghosh, G. (2016) Structural Basis for the Activation of IKK1/α.. Cell Rep. 17, 1907-1914
Polley, S., Passos, D. Oliveira, Bin Huang, D. -, Mulero, M. Carmen, Mazumder, A., Biswas, T., Verma, I. M., Lyumkis, D., and Ghosh, G. (2016) Structural Basis for the Activation of IKK1/α.. Cell Rep. 17, 1907-1914
Golczak, M., Kiser, P. D., Sears, A. E., Lodowski, D. T., Blaner, W. S., and Palczewski, K. (2012) Structural basis for the acyltransferase activity of lecithin:retinol acyltransferase-like proteins. J Biol Chem. 287, 23790-807
Wu, A., Salom, D., Hong, J. D., Tworak, A., Watanabe, K., Pardon, E., Steyaert, J., Kandori, H., Katayama, K., Kiser, P. D., and Palczewski, K. (2023) Structural basis for the allosteric modulation of rhodopsin by nanobody binding to its extracellular domain. Nat Commun. 14, 5209
Wu, A., Salom, D., Hong, J. D., Tworak, A., Watanabe, K., Pardon, E., Steyaert, J., Kandori, H., Katayama, K., Kiser, P. D., and Palczewski, K. (2023) Structural basis for the allosteric modulation of rhodopsin by nanobody binding to its extracellular domain. Nat Commun. 14, 5209
Westblade, L. F., Campbell, E. A., Pukhrambam, C., Padovan, J. C., Nickels, B. E., Lamour, V., and Darst, S. A. (2010) Structural basis for the bacterial transcription-repair coupling factor/RNA polymerase interaction. Nucleic Acids Res. 38, 8357-69
Westblade, L. F., Campbell, E. A., Pukhrambam, C., Padovan, J. C., Nickels, B. E., Lamour, V., and Darst, S. A. (2010) Structural basis for the bacterial transcription-repair coupling factor/RNA polymerase interaction. Nucleic Acids Res. 38, 8357-69
Syroegin, E. A., Flemmich, L., Klepacki, D., Vázquez-Laslop, N., Micura, R., and Polikanov, Y. S. (2022) Structural basis for the context-specific action of the classic peptidyl transferase inhibitor chloramphenicol. Nat Struct Mol Biol. 29, 152-161
Cuello, L. G., Jogini, V., D Cortes, M., Pan, A. C., Gagnon, D. G., Dalmas, O., Cordero-Morales, J. F., Chakrapani, S., Roux, B., and Perozo, E. (2010) Structural basis for the coupling between activation and inactivation gates in K(+) channels. Nature. 466, 272-5
Cuello, L. G., Jogini, V., D Cortes, M., Pan, A. C., Gagnon, D. G., Dalmas, O., Cordero-Morales, J. F., Chakrapani, S., Roux, B., and Perozo, E. (2010) Structural basis for the coupling between activation and inactivation gates in K(+) channels. Nature. 466, 272-5
Syroegin, E. A., Aleksandrova, E. V., and Polikanov, Y. S. (2022) Structural basis for the inability of chloramphenicol to inhibit peptide bond formation in the presence of A-site glycine. Nucleic Acids Res. 50, 7669-7679
Delmar, J. A., Chou, T. - H., Wright, C. C., Licon, M. H., Doh, J. K., Radhakrishnan, A., Kumar, N., Lei, H. - T., Bolla, J. Reddy, Rajashankar, K. R., Su, C. - C., Purdy, G. E., and Yu, E. W. (2015) Structural Basis for the Regulation of the MmpL Transporters of Mycobacterium tuberculosis. J Biol Chem. 290, 28559-74
Chan, R. T., Peters, J. K., Robart, A. R., Wiryaman, T., Rajashankar, K. R., and Toor, N. (2018) Structural basis for the second step of group II intron splicing. Nat Commun. 9, 4676
Silverstein, T. D., Johnson, R. E., Jain, R., Prakash, L., Prakash, S., and Aggarwal, A. K. (2010) Structural basis for the suppression of skin cancers by DNA polymerase eta. Nature. 465, 1039-43
Silverstein, T. D., Johnson, R. E., Jain, R., Prakash, L., Prakash, S., and Aggarwal, A. K. (2010) Structural basis for the suppression of skin cancers by DNA polymerase eta. Nature. 465, 1039-43
Peisley, A., Wu, B., Xu, H., Chen, Z. J., and Hur, S. (2014) Structural basis for ubiquitin-mediated antiviral signal activation by RIG-I. Nature. 509, 110-4
Omattage, N. S., Deng, Z., Pinkner, J. S., Dodson, K. W., Almqvist, F., Yuan, P., and Hultgren, S. J. (2018) Structural basis for usher activation and intramolecular subunit transfer in P pilus biogenesis in Escherichia coli. Nat Microbiol. 10.1038/s41564-018-0255-y
Zong, Y., Zhang, B., Gu, S., Lee, K., Zhou, J., Yao, G., Figueiredo, D., Perry, K., Mei, L., and Jin, R. (2012) Structural basis of agrin-LRP4-MuSK signaling. Genes Dev. 26, 247-58
Aleksandrova, E. V., J Y Wu, K., Tresco, B. I. C., Syroegin, E. A., Killeavy, E. E., Balasanyants, S. M., Svetlov, M. S., Gregory, S. T., Atkinson, G. C., Myers, A. G., and Polikanov, Y. S. (2024) Structural basis of Cfr-mediated antimicrobial resistance and mechanisms to evade it. Nat Chem Biol. 20, 867-876

Pages