Publications

Found 2737 results
Filters: Filter is   [Clear All Filters]
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
S
Cao, H., Pauff, J. M., and Hille, R. (2010) Substrate orientation and catalytic specificity in the action of xanthine oxidase: the sequential hydroxylation of hypoxanthine to uric acid. J Biol Chem. 285, 28044-53
Fang, J., Leichter, S. M., Jiang, J., Biswal, M., Lu, J., Zhang, Z. - M., Ren, W., Zhai, J., Cui, Q., Zhong, X., and Song, J. (2021) Substrate deformation regulates DRM2-mediated DNA methylation in plants. Sci Adv. 10.1126/sciadv.abd9224
Wang, H., and Gouaux, E. (2012) Substrate binds in the S1 site of the F253A mutant of LeuT, a neurotransmitter sodium symporter homologue. EMBO Rep. 13, 861-6
Gao, J., Ha, B. Hak, Lou, H. Jane, Morse, E. M., Zhang, R., Calderwood, D. A., Turk, B. E., and Boggon, T. J. (2013) Substrate and inhibitor specificity of the type II p21-activated kinase, PAK6. PLoS One. 8, e77818
Blus, B. J., Hashimoto, H., Seo, H. - S., Krolak, A., and Debler, E. W. (2019) Substrate Affinity and Specificity of the ScSth1p Bromodomain Are Fine-Tuned for Versatile Histone Recognition. Structure. 27, 1460-1468.e3
Shnitsar, V., Li, J., Li, X., Calmettes, C., Basu, A., Casey, J. R., Moraes, T. F., and Reithmeier, R. A. F. (2013) A substrate access tunnel in the cytosolic domain is not an essential feature of the solute carrier 4 (SLC4) family of bicarbonate transporters. J Biol Chem. 288, 33848-60
Blank, P. N., Barrow, G. H., Chou, W. K. W., Duan, L., Cane, D. E., and Christianson, D. W. (2017) Substitution of Aromatic Residues with Polar Residues in the Active Site Pocket of epi-Isozizaene Synthase Leads to the Generation of New Cyclic Sesquiterpenes. Biochemistry. 10.1021/acs.biochem.7b00895
Zeller, M. J., Nuthanakanti, A., Li, K., Aubé, J., Serganov, A., and Weeks, K. M. (2022) Subsite Ligand Recognition and Cooperativity in the TPP Riboswitch: Implications for Fragment-Linking in RNA Ligand Discovery. ACS Chem Biol. 17, 438-448
Gallagher-Jones, M., Glynn, C., Boyer, D. R., Martynowycz, M. W., Hernandez, E., Miao, J., Zee, C. - T., Novikova, I. V., Goldschmidt, L., McFarlane, H. T., Helguera, G. F., Evans, J. E., Sawaya, M. R., Cascio, D., Eisenberg, D. S., Gonen, T., and Rodriguez, J. A. (2018) Sub-ångström cryo-EM structure of a prion protofibril reveals a polar clasp.. Nat Struct Mol Biol. 10.1038/s41594-017-0018-0
Rajagopalan, S., Teter, S. J., Zwart, P. H., Brennan, R. G., Phillips, K. J., and Kiley, P. J. (2013) Studies of IscR reveal a unique mechanism for metal-dependent regulation of DNA binding specificity. Nat Struct Mol Biol. 20, 740-7
Hou, X., Burstein, S. R., and Long, S. Barstow (2018) Structures reveal opening of the store-operated calcium channel Orai. Elife. 10.7554/eLife.36758
Lee, S., Choi, J., Mohanty, J., Sousa, L. P., Tome, F., Pardon, E., Steyaert, J., Lemmon, M. A., Lax, I., and Schlessinger, J. (2018) Structures of β-klotho reveal a 'zip code'-like mechanism for endocrine FGF signalling.. Nature. 10.1038/nature25010
Knappenberger, A. John, Reiss, C. Wetheringt, and Strobel, S. A. (2018) Structures of two aptamers with differing ligand specificity reveal ruggedness in the functional landscape of RNA. Elife. 10.7554/eLife.36381
Gürel, G., Blaha, G., Steitz, T. A., and Moore, P. B. (2009) Structures of triacetyloleandomycin and mycalamide A bind to the large ribosomal subunit of Haloarcula marismortui. Antimicrob Agents Chemother. 53, 5010-4
F Demircioglu, E., Sosa, B. A., Ingram, J., Ploegh, H. L., and Schwartz, T. U. (2016) Structures of TorsinA and its disease-mutant complexed with an activator reveal the molecular basis for primary dystonia. Elife. 10.7554/eLife.17983
Song, G., and Springer, T. A. (2014) Structures of the Toxoplasma gliding motility adhesin. Proc Natl Acad Sci U S A. 111, 4862-7
Zhang, W., Dunkle, J. A., and Cate, J. H. D. (2009) Structures of the ribosome in intermediate states of ratcheting. Science. 325, 1014-7
Singh, H., Arentson, B. W., Becker, D. F., and Tanner, J. J. (2014) Structures of the PutA peripheral membrane flavoenzyme reveal a dynamic substrate-channeling tunnel and the quinone-binding site. Proc Natl Acad Sci U S A. 111, 3389-94
Su, C. - C., Klenotic, P. A., Cui, M., Lyu, M., Morgan, C. E., and Yu, E. W. (2021) Structures of the mycobacterial membrane protein MmpL3 reveal its mechanism of lipid transport. PLoS Biol. 19, e3001370
Gorelik, A., Illes, K., Bui, K. Huy, and Nagar, B. (2022) Structures of the mannose-6-phosphate pathway enzyme, GlcNAc-1-phosphotransferase. Proc Natl Acad Sci U S A. 119, e2203518119
Sukumar, N., Dewanti, A., Merli, A., Rossi, G. Luigi, Mitra, B., and F Mathews, S. (2009) Structures of the G81A mutant form of the active chimera of (S)-mandelate dehydrogenase and its complex with two of its substrates. Acta Crystallogr D Biol Crystallogr. 65, 543-52
Varlakhanova, N. V., Alvarez, F. J. D., Brady, T. M., Tornabene, B. A., Hosford, C. J., Chappie, J. S., Zhang, P., and Ford, M. G. J. (2018) Structures of the fungal dynamin-related protein Vps1 reveal a unique, open helical architecture. J Cell Biol. 10.1083/jcb.201712021
Dunkle, J. A., Wang, L., Feldman, M. B., Pulk, A., Chen, V. B., Kapral, G. J., Noeske, J., Richardson, J. S., Blanchard, S. C., and Cate, J. H. Doudna (2011) Structures of the bacterial ribosome in classical and hybrid states of tRNA binding. Science. 332, 981-4
Stanley, R. E., Blaha, G., Grodzicki, R. L., Strickler, M. D., and Steitz, T. A. (2010) The structures of the anti-tuberculosis antibiotics viomycin and capreomycin bound to the 70S ribosome. Nat Struct Mol Biol. 17, 289-93
Liew, J. J. M., Saudi, I. M. El, Nguyen, S. V., Wicht, D. K., and Dowling, D. P. (2021) Structures of the alkanesulfonate monooxygenase MsuD provide insight into C-S bond cleavage, substrate scope, and an unexpected role for the tetramer. J Biol Chem. 297, 100823

Pages