Publications

Found 2792 results
Journal Article
Zhang, Y., Porcelli, M., Cacciapuoti, G., and Ealick, S. E. (2006) The crystal structure of 5'-deoxy-5'-methylthioadenosine phosphorylase II from Sulfolobus solfataricus, a thermophilic enzyme stabilized by intramolecular disulfide bonds. J Mol Biol. 357, 252-62
Jacewicz, A., Schwer, B., Smith, P., and Shuman, S. (2014) Crystal structure, mutational analysis and RNA-dependent ATPase activity of the yeast DEAD-box pre-mRNA splicing factor Prp28. Nucleic Acids Res. 42, 12885-98
Dhatwalia, R., Singh, H., Reilly, T. J., and Tanner, J. J. (2015) Crystal structure and tartrate inhibition of Legionella pneumophila histidine acid phosphatase. Arch Biochem Biophys. 585, 32-38
Blower, T. R., Williamson, B. H., Kerns, R. J., and Berger, J. M. (2016) Crystal structure and stability of gyrase-fluoroquinolone cleaved complexes from Mycobacterium tuberculosis. Proc Natl Acad Sci U S A. 113, 1706-13
Peng, M., Cascio, D., and Egea, P. F. (2015) Crystal structure and solution characterization of the thioredoxin-2 from Plasmodium falciparum, a constituent of an essential parasitic protein export complex. Biochem Biophys Res Commun. 456, 403-9
Stanek, K. A., Patterson-West, J., Randolph, P. S., and Mura, C. (2017) Crystal structure and RNA-binding properties of an Hfq homolog from the deep-branching Aquificae: conservation of the lateral RNA-binding mode. Acta Crystallogr D Struct Biol. 73, 294-315
Uson, M. Loressa, Carl, A., Goldgur, Y., and Shuman, S. (2018) Crystal structure and mutational analysis of Mycobacterium smegmatis FenA highlight active site amino acids and three metal ions essential for flap endonuclease and 5' exonuclease activities. Nucleic Acids Res. 10.1093/nar/gky238
Zhang, Y., White, R. H., and Ealick, S. E. (2008) Crystal structure and function of 5-formaminoimidazole-4-carboxamide ribonucleotide synthetase from Methanocaldococcus jannaschii. Biochemistry. 47, 205-17
Basak, S., Schmandt, N., Gicheru, Y., and Chakrapani, S. (2017) Crystal structure and dynamics of a lipid-induced potential desensitized-state of a pentameric ligand-gated channel. Elife. 10.7554/eLife.23886
Ellis-Guardiola, K., Rui, H., Beckner, R. L., Srivastava, P., Sukumar, N., Roux, B., and Lewis, J. C. (2019) Crystal Structure and Conformational Dynamics of Pyrococcus furiosus Prolyl Oligopeptidase. Biochemistry. 10.1021/acs.biochem.9b00031
Bozzi, A. T., Bane, L. B., Weihofen, W. A., Singharoy, A., Guillen, E. R., Ploegh, H. L., Schulten, K., and Gaudet, R. (2016) Crystal Structure and Conformational Change Mechanism of a Bacterial Nramp-Family Divalent Metal Transporter. Structure. 24, 2102-2114
Unciuleac, M. - C., Smith, P. C., and Shuman, S. (2016) Crystal Structure and Biochemical Characterization of a Mycobacterium smegmatis AAA-Type Nucleoside Triphosphatase Phosphohydrolase (Msm0858). J Bacteriol. 198, 1521-33
Jin, R., Singh, S. K., Gu, S., Furukawa, H., Sobolevsky, A. I., Zhou, J., Jin, Y., and Gouaux, E. (2009) Crystal structure and association behaviour of the GluR2 amino-terminal domain. EMBO J. 28, 1812-23
Mao, Y., Xu, X., Xu, W., Ishida, Y., Leal, W. S., Ames, J. B., and Clardy, J. (2010) Crystal and solution structures of an odorant-binding protein from the southern house mosquito complexed with an oviposition pheromone. Proc Natl Acad Sci U S A. 107, 19102-7
M Joyce, G., Sankhala, R. S., Chen, W. - H., Choe, M., Bai, H., Hajduczki, A., Yan, L., Sterling, S. L., Peterson, C. E., Green, E. C., Smith, C., de Val, N., Amare, M., Scott, P., Laing, E. D., Broder, C. C., Rolland, M., Michael, N. L., and Modjarrad, K. (2020) A Cryptic Site of Vulnerability on the Receptor Binding Domain of the SARS-CoV-2 Spike Glycoprotein. bioRxiv. 10.1101/2020.03.15.992883
Guo, T. Wei, Bartesaghi, A., Yang, H., Falconieri, V., Rao, P., Merk, A., Eng, E. T., Raczkowski, A. M., Fox, T., Earl, L. A., Patel, D. J., and Subramaniam, S. (2017) Cryo-EM Structures Reveal Mechanism and Inhibition of DNA Targeting by a CRISPR-Cas Surveillance Complex. Cell. 171, 414-426.e12
Lu, J., Cao, Q., Hughes, M. P., Sawaya, M. R., Boyer, D. R., Cascio, D., and Eisenberg, D. S. (2020) CryoEM structure of the low-complexity domain of hnRNPA2 and its conversion to pathogenic amyloid. Nat Commun. 11, 4090
Fu, T. - M., Li, Y., Lu, A., Li, Z., Vajjhala, P. R., Cruz, A. C., Srivastava, D. B., DiMaio, F., Penczek, P. A., Siegel, R. M., Stacey, K. J., Egelman, E. H., and Wu, H. (2016) Cryo-EM Structure of Caspase-8 Tandem DED Filament Reveals Assembly and Regulation Mechanisms of the Death-Inducing Signaling Complex. Mol Cell. 64, 236-250
Liu, Y., Pan, J., Jenni, S., Raymond, D. D., Caradonna, T., Do, K. T., Schmidt, A. G., Harrison, S. C., and Grigorieff, N. (2017) CryoEM Structure of an Influenza Virus Receptor-Binding Site Antibody-Antigen Interface. J Mol Biol. 429, 1829-1839
Wu, X., and Rapoport, T. A. (2021) Cryo-EM structure determination of small proteins by nanobody-binding scaffolds (Legobodies). Proc Natl Acad Sci U S A. 10.1073/pnas.2115001118
Deng, Z., Paknejad, N., Maksaev, G., Sala-Rabanal, M., Nichols, C. G., Hite, R. K., and Yuan, P. (2018) Cryo-EM and X-ray structures of TRPV4 reveal insight into ion permeation and gating mechanisms. Nat Struct Mol Biol. 25, 252-260
Teplova, M., Falschlunger, C., Krasheninina, O., Egger, M., Ren, A., Patel, D. J., and Micura, R. (2019) Crucial Roles of Two Hydrated Mg Ions in Reaction Catalysis of the Pistol Ribozyme. Angew Chem Int Ed Engl. 10.1002/anie.201912522
Sethi, D. K., Gordo, S., Schubert, D. A., and Wucherpfennig, K. W. (2013) Crossreactivity of a human autoimmune TCR is dominated by a single TCR loop. Nat Commun. 4, 2623
Padayatti, P. S., Leung, J. H., Mahinthichaichan, P., Tajkhorshid, E., Ishchenko, A., Cherezov, V., S Soltis, M., J Jackson, B., C Stout, D., Gennis, R. B., and Zhang, Q. (2017) Critical Role of Water Molecules in Proton Translocation by the Membrane-Bound Transhydrogenase. Structure. 25, 1111-1119.e3
Jia, N., Jones, R., Yang, G., Ouerfelli, O., and Patel, D. J. (2019) CRISPR-Cas III-A Csm6 CARF Domain Is a Ring Nuclease Triggering Stepwise cA Cleavage with ApA>p Formation Terminating RNase Activity. Mol Cell. 75, 944-956.e6

Pages