Publications

Found 2722 results
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z 
C
Xia, S., Vashishtha, A., Bulkley, D., Eom, S. Hyun, Wang, J., and Konigsberg, W. H. (2012) Contribution of partial charge interactions and base stacking to the efficiency of primer extension at and beyond abasic sites in DNA. Biochemistry. 51, 4922-31
Robinson, R., Qureshi, I. A., Klancher, C. A., Rodriguez, P. J., Tanner, J. J., and Sobrado, P. (2015) Contribution to catalysis of ornithine binding residues in ornithine N5-monooxygenase. Arch Biochem Biophys. 585, 25-31
Li, X., Lee, H., Wu, J., and Breslow, E. (2007) Contributions of the interdomain loop, amino terminus, and subunit interface to the ligand-facilitated dimerization of neurophysin: crystal structures and mutation studies of bovine neurophysin-I. Protein Sci. 16, 52-68
Da Fonseca, I., Qureshi, I. A., Mehra-Chaudhary, R., Kizjakina, K., Tanner, J. J., and Sobrado, P. (2014) Contributions of unique active site residues of eukaryotic UDP-galactopyranose mutases to substrate recognition and active site dynamics. Biochemistry. 53, 7794-804
Blankenchip, C. L., Nguyen, J. V., Lau, R. K., Ye, Q., Gu, Y., and Corbett, K. D. (2022) Control of bacterial immune signaling by a WYL domain transcription factor. Nucleic Acids Res. 50, 5239-5250
Hancock, S. P., Ghane, T., Cascio, D., Rohs, R., Di Felice, R., and Johnson, R. C. (2013) Control of DNA minor groove width and Fis protein binding by the purine 2-amino group. Nucleic Acids Res. 41, 6750-60
Smith, M. A., Majer, S. H., Vilbert, A. C., and Lancaster, K. M. (2019) Controlling a burn: outer-sphere gating of hydroxylamine oxidation by a distal base in cytochrome P460. Chem Sci. 10, 3756-3764
Durek, T., Torbeev, V. Yu, and Kent, S. B. H. (2007) Convergent chemical synthesis and high-resolution x-ray structure of human lysozyme. Proc Natl Acad Sci U S A. 104, 4846-51
Gilbert, N. C., Rui, Z., Neau, D. B., Waight, M. T., Bartlett, S. G., Boeglin, W. E., Brash, A. R., and Newcomer, M. E. (2012) Conversion of human 5-lipoxygenase to a 15-lipoxygenase by a point mutation to mimic phosphorylation at Serine-663. FASEB J. 26, 3222-9
Chen, M., Drury, J. E., Christianson, D. W., and Penning, T. M. (2012) Conversion of human steroid 5β-reductase (AKR1D1) into 3β-hydroxysteroid dehydrogenase by single point mutation E120H: example of perfect enzyme engineering.. J Biol Chem. 287, 16609-22
Hancock, S. P., Cascio, D., and Johnson, R. C. (2019) Cooperative DNA binding by proteins through DNA shape complementarity. Nucleic Acids Res. 47, 8874-8887
Sasaki, E., Zhang, X., Sun, H. G., Lu, M. -yehJade, Liu, T. -lin, Ou, A., Li, J. -yi, Chen, Y. -hsiang, Ealick, S. E., and Liu, H. -wen (2014) Co-opting sulphur-carrier proteins from primary metabolic pathways for 2-thiosugar biosynthesis. Nature. 510, 427-31
Fetherolf, M. M., Boyd, S. D., Taylor, A. B., Kim, H. Jong, Wohlschlegel, J. A., Blackburn, N. J., P Hart, J., Winge, D. R., and Winkler, D. D. (2017) Copper-zinc superoxide dismutase is activated through a sulfenic acid intermediate at a copper ion entry site. J Biol Chem. 292, 12025-12040
Almutairi, M. M., Svetlov, M. S., Hansen, D. A., Khabibullina, N. F., Klepacki, D., Kang, H. - Y., Sherman, D. H., Vázquez-Laslop, N., Polikanov, Y. S., and Mankin, A. S. (2017) Co-produced natural ketolides methymycin and pikromycin inhibit bacterial growth by preventing synthesis of a limited number of proteins. Nucleic Acids Res. 45, 9573-9582
Geng, Y., Deng, Z., Zhang, G., Budelli, G., Butler, A., Yuan, P., Cui, J., Salkoff, L., and Magleby, K. L. (2020) Coupling of Ca and voltage activation in BK channels through the αB helix/voltage sensor interface.. Proc Natl Acad Sci U S A. 117, 14512-14521
Prucha, G. R., Henry, S., Hollander, K., Carter, Z. J., Spasov, K. A., Jorgensen, W. L., and Anderson, K. S. (2023) Covalent and noncovalent strategies for targeting Lys102 in HIV-1 reverse transcriptase. Eur J Med Chem. 262, 115894
Ippolito, J. A., Niu, H., Bertoletti, N., Carter, Z. J., Jin, S., Spasov, K. A., Cisneros, J. A., Valhondo, M., Cutrona, K. J., Anderson, K. S., and Jorgensen, W. L. (2021) Covalent Inhibition of Wild-Type HIV-1 Reverse Transcriptase Using a Fluorosulfate Warhead. ACS Med Chem Lett. 12, 249-255
Chan, A. H., Lee, W. - G., Spasov, K. A., Cisneros, J. A., Kudalkar, S. N., Petrova, Z. O., Buckingham, A. B., Anderson, K. S., and Jorgensen, W. L. (2017) Covalent inhibitors for eradication of drug-resistant HIV-1 reverse transcriptase: From design to protein crystallography. Proc Natl Acad Sci U S A. 10.1073/pnas.1711463114
Kim, S., Grant, R. A., and Sauer, R. T. (2011) Covalent linkage of distinct substrate degrons controls assembly and disassembly of DegP proteolytic cages. Cell. 145, 67-78
Campbell, A. C., Becker, D. F., Gates, K. S., and Tanner, J. J. (2020) Covalent Modification of the Flavin in Proline Dehydrogenase by Thiazolidine-2-Carboxylate. ACS Chem Biol. 10.1021/acschembio.9b00935
Cavalier, M. C., Pierce, A. D., Wilder, P. T., Alasady, M. J., Hartman, K. G., Neau, D. B., Foley, T. L., Jadhav, A., Maloney, D. J., Simeonov, A., Toth, E. A., and Weber, D. J. (2014) Covalent small molecule inhibitors of Ca(2+)-bound S100B. Biochemistry. 53, 6628-40
Baytshtok, V., Chen, J., Glynn, S. E., Nager, A. R., Grant, R. A., Baker, T. A., and Sauer, R. T. (2017) Covalently linked HslU hexamers support a probabilistic mechanism that links ATP hydrolysis to protein unfolding and translocation. J Biol Chem. 292, 5695-5704
Baca, C. F., Yu, Y., Rostøl, J. T., Majumder, P., Patel, D. J., and Marraffini, L. A. (2024) The CRISPR effector Cam1 mediates membrane depolarization for phage defence. Nature. 10.1038/s41586-023-06902-y
Jia, N., Jones, R., Yang, G., Ouerfelli, O., and Patel, D. J. (2019) CRISPR-Cas III-A Csm6 CARF Domain Is a Ring Nuclease Triggering Stepwise cA Cleavage with ApA>p Formation Terminating RNase Activity. Mol Cell. 75, 944-956.e6
Padayatti, P. S., Leung, J. H., Mahinthichaichan, P., Tajkhorshid, E., Ishchenko, A., Cherezov, V., S Soltis, M., J Jackson, B., C Stout, D., Gennis, R. B., and Zhang, Q. (2017) Critical Role of Water Molecules in Proton Translocation by the Membrane-Bound Transhydrogenase. Structure. 25, 1111-1119.e3

Pages